Данный метод содержит две свои составляющие части - корреляционный анализ и регрессионный анализ. Корреляционный анализ - это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. Регрессионный анализ - это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.
Для оценки силы связи в теории корреляции применяется шкала английского статистика Чеддока: слабая - от 0,1 до 0,3; умеренная - от 0,3 до 0,5; заметная - от 0,5 до 0,7; высокая - от 0,7 до 0,9; весьма высокая (сильная) - от 0,9 до 1,0. Она используется далее в примерах по теме.
Линейная корреляция
Данная корреляция характеризует линейную взаимосвязь в вариациях переменных. Она может быть парной (две коррелирующие переменные) или множественной (более двух переменных), прямой или обратной - положительной или отрицательной, когда переменные варьируют соответственно в одинаковых или разных направлениях.
Если переменные - количественные и равноценные в своих независимых наблюдениях при их общем количестве , то важнейшими эмпирическими мерами тесноты их линейной взаимосвязи являются коэффициент прямой корреляции знаков австрийского психолога Г.Т.Фехнера (1801-1887) и коэффициенты парной, чистой (частной) и множественной (совокупной) корреляции английского статистика-биометрика К.Пирсона (1857-1936).
Коэффициент парной корреляции знаков Фехнера определяет согласованность направлений в индивидуальных отклонениях переменных и от своих средних и . Он равен отношению разности сумм совпадающих () и несовпадающих () пар знаков в отклонениях и к сумме этих сумм:
(7)
Величина Кф изменяется от -1 до +1. Суммирование в (1) производится по наблюдениям, которые не указаны в суммах ради упрощения. Если какое-то одно отклонение или , то оно не входит в расчет. Если же сразу оба отклонения нулевые: , то такой случай считается совпадающим по знакам и входит в состав .
Коэффициенты парной, чистой (частной) и множественной (совокупной) линейной корреляции Пирсона, в отличие от коэффициента Фехнера, учитывают не только знаки, но и величины отклонений переменных. Для их расчета используют разные методы. Так, согласно методу прямого счета по несгруппированным данным, коэффициент парной корреляции Пирсона имеет вид:
(8)
Этот коэффициент также изменяется от -1 до +1. При наличии нескольких переменных рассчитывается коэффициент множественной (совокупной) линейной корреляции Пирсона. Для трех переменных x, y, z он имеет вид
Эффективность использования оборотных средств на предприятии и пути ее повышения
Непременным
условием для осуществления предприятием хозяйственной деятельности является
наличие оборотных средств (оборотного капитала).
От
состояния оборотных капитала зависит успешное осуществление производственного
цикла предприятия, иб ...
Финансово-экономический анализ на примере ООО Ромашка
Предварительный обзор экономического и
финансового положения субъекта хозяйствования
...